Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex.
نویسندگان
چکیده
We have investigated the dendritic and axonal morphology of connected pairs of L4 spiny neurons and L2/3 pyramidal cells in rat barrel cortex. The 'projection' field of the axons of L4 spiny neurons in layers 2/3, 4 and 5 has a width of 400-500 microm thereby defining an anatomical barrel-column. In layer 2/3, the averaged axonal 'projection' field of L4 spiny neurons together with the dendritic 'receptive' field of the connected L2/3 pyramidal cells form a mostly column-restricted anatomical L4-to-L2/3 'innervation domain' that extends 300-400 microm and includes mostly basal dendrites. In the L4-to-L2/3 innervation domain a single L4 spiny neuron contacts approximately 300-400 pyramidal cells while in the L4-to-L4 innervation domain it contacts approximately 200 other L4 spiny neurons. Similarly approximately 300-400 L4 spiny neurons converge onto a single pyramidal cell and approximately 200 L4 spiny neurons innervate another L4 spiny neuron. The L2/3 pyramidal cell axon has a vertical projection field spanning all cortical layers, and a long-range horizontal field in layers 2/3 (width 1,100-1,200 microm) and 5 (700-800 microm) projecting across column borders. The results suggest that the flow of excitation within a barrel-column is determined by the largely columnar confinement of the L4-to-L4 and L4-to-L2/3 innervation domains. A whisker deflection activates approximately 140 L4 spiny neurons that will generate EPSPs in most barrel-related L2/3 pyramidal cells of a principal whisker column. The translaminar synaptic transmission to layer 2/3 and the axonal projection fields of L2/3 pyramidal cells are the major determinants of the dynamic, multi-columnar map in which a single whisker deflection is represented in the cortex.
منابع مشابه
Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat
Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...
متن کاملاثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورونهای لایه IV و V قشر بارل (بشکهای) در موش صحرایی
Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...
متن کاملSpatial patterns of excitation and inhibition evoked by lateral connectivity in layer 2/3 of rat barrel cortex.
In the rat barrel cortex, neurons in layer 4 are topographically arranged in a precise columnar structure, and the excitatory feed-forward input from layer 4 to layer 2/3 projects almost exclusively within the home barrel column. Here we analyzed the lateral connectivity that links neighboring columns in layer 2/3, which is necessary for integrating information across whiskers. We examined the ...
متن کاملNeuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats
Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...
متن کاملEffect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2003